
Applying Standard Independent Verification and
Validation (IV&V) Techniques within an Agile
Framework: Is there a Compatibility Issue?

James B. Dabney, UHCL

James D Arthur, VA Tech

IEEE/INCOSE SysCon 2017

1

https://ntrs.nasa.gov/search.jsp?R=20170003999 2020-05-09T15:24:01+00:00Z

Overview

• Conventional mission-critical software
lifecycle

• Conventional IV&V process

• Agile software development

• Hybrid Agile variants

• Adjusting IV&V to hybrid Agile

• Conclusions

2

Conventional Mission-Critical Software Lifecycle

• Traditional lifecycle based on waterfall model

• Sequence of milestone reviews

– Preliminary design review (PDR)

– Critical design review (CDR)

– Test readiness review (TRR)

– Design certification review (DCR)

• Larger projects incremental model

– Planned series of waterfall lifecycles

• Certification mandated by regulations (e.g.
FDA, UL)

3

Example Traditional Waterfall Lifecycle

4

Example Incremental Lifecycle

5

• Increments can be
developmental or operational

• Plan several increments ahead

Conventional IV&V Process
• Reduce program risk by analyzing key artifacts

• Strive to find issues in-phase by mirroring
development

• Verify during each lifecycle phase that the
product satisfies requirements defined in
previous phase
– Requirements meet user needs, complete

– No unintended functionality specified

– Design satisfies requirements and no more

– Testing fully covers design and requirements

6

Understanding Agile

7

Need to

respond to

constant

changes

Agile Values

Agile Principles

Agile Practices

The fundamental reason

for a “new” paradigm

Defines the set of most

important beliefs of what

is truly important

Defines a set ways

to meet the values

Defines in detail how this is

implemented in practice

Material

adapted from

"All about Agile",

Ahmed Sidky,

Presentation for

CS 5704,

Va Tech

Fall 2006

Agile Manifesto [AM01]

8

Individuals
and
interactions

Over Process and tools Mission-Critical /
IV&V Implication

Working
software

Over Comprehensive
documentation

Docs required for
IV&V, certification

Customer
collaboration

Over Contract
negotiation

End product
requirements
defined at outset

Responding to
change

Over Following a plan Change inevitable,
must be managed

Agile Principles Mission-Critical / IV&V Consideration

Customer satisfaction by rapid,
continuous delivery of useful software

Often don’t need working software until
late in program

Working software is delivered frequently
(weeks rather than months)

Frequent updates less important than
technical rigor

Working software is the principal
measure of progress

Safety / health of enterprise principal
measure

Even late changes in requirements are
welcomed

Late changes inevitable but can be costly

Close, daily cooperation between
customer & developer

Often integrated product teams

Fact-to-face conversations is the best
form of communication

Clear documentation essential due to
long operational life

Projects are built around motivated
individuals, who should be trusted

Some projects span careers, must be able
to retain institutional knowledge

Continuous attention to technical
excellence and good design

Clearly essential

Simplicity
Always desirable

Self-organizing teams Multi-site, multi-contractor, large staff

Regular adaption to changing
circumstances

Budgeting, staffing can have multi-year
lead times 9

Agile Planning: The Scrum Process

10

Agile Planning:
Release and Iteration Planning

11

Material

adapted from

"All about Agile",

Ahmed Sidky,

Presentation for

CS 5704,

Va Tech

Fall 2006

Feature 1
Feature 2
Feature 3
Feature 4
Feature 5
Feature 6
Feature 7
Feature …

Feature 1, Feature 2, Feature 3a

Story A
Story B
Story C
Story D
Story …

Story A
Story B

Story C
Story D
Story E

Story F
Story G

Product
Backlog

Release A

Release Backlog Iteration 1 Iteration 2 Iteration 3

Adapting Agile to Large Projects

• Alistair Cockburn (one of the original agile
proponents): “small projects, web projects,
exploratory projects, agile is fabulous; it beats the
pants off of everything else, but for NASA, no”
[AM13]

• “Embedded systems have specific product
requirements, e.g. safety, which are not obviously
addressed by agile practices such as XP or Scrum”
[EOS14]

• Key assumptions of Agile (e.g.co-located teams)
are difficult to realize on large projects [TFR02]

12

Variants of Agile for Large Projects

• Scaled Agile Framework (SAFe) Intended for
high-assurance environments (medical)

– Designed to comply with regulatory requirements
(FDA)

– Gaining acceptance

• Incremental Commitment Model (ICM)
Merges concepts of classic V-verification,
concurrent engineering, Agile

– Intended for large mission-critical and net-centric
systems

13

Hybrid Projects

• Similar to SAFe methodology

14

• Early lifecycle activities follow standard process
• Requirements, design, test follow Agile process

– Sequence of releases composed of multiple sprints
– Work down project backlog

• Certification follows standard process

Water-Scrum-Fall Process

15

Mapping Traditional V&V to Agile
• Assessed applicability of standard V&V methods

to hybrid Agile

• For each method specified for project elements,
assessed
– Inputs

– Timing in lifecycle

– Feasibility of executing method given the timing and
available information

• Methods fall into three classes

– Early lifecycle methods generally compatible

– Methods involving tracing need to be tailored

– Methods involving completeness need to be replaced
16

Verify Implementation of Requirements or Design in Source Code or Scripts through
Manual Inspection

Reuse applicability by comparing operational environments

Validate Safety Requirements by Inspection of Traces to Fault Trees and FMEA

Verify Software Behavior for Off-Nominal Conditions using Independent Testing

Validate Software Architecture by Inspecting Traces to Essential Properties

Verify Critical Software Changes By Inspecting Change Requests

Verify System/Software Architecture Using a Discrete Model of Performance Requirements
in Stressing Scenarios

Assess Architecture Completeness by Inspection Against an Architectural Standard

Validate Feasibility Study Conclusions by Inspection

Validate Test Procedure by Inspection and Traces to Requirements

Validate Mission Project Operational Concepts by Generating Use Cases from Concept
Documentation

Validate System Security Categorization and Regulatory Security Requirements by
Inspection using Security Risk Management Framework (NIST-SP-800-37, Step 1)

Verify Security Control Selection and Threats/Risks Identification by Inspection using
Security Risk Management Framework (NIST-SP-800-37, Step 2)

UH-CL / VT 17

Methods
Requiring
No Tailoring

UH-CL / VT 18

Verify Software Code Quality using Static Analysis Tools

Validate Test Plan by Inspection

Validate Requirements by Inspecting Bidirectional Traces

Verify Test Execution by Inspection of Test Cases, Inputs
and Results

Verify SW Interface Implementation by Inspection Against
Interface Design

Verify Critical Software Changes By Inspecting Change
Requests

Validate Test Cases by Inspection and Traces to
Requirements

Verify Scripted Timeline Via Manual Multi-Directional
Tracing

Verify Software Design by Inspecting Traces to
Requirements and Software Architecture

Verify Software Capabilities through Independent Testing
of Operational Scenarios

Methods
Requiring
Tailoring

UH-CL / VT 19

Validate Interface Requirements by Inspection Against Component
Interfaces

Validate Requirements by Inspecting Against Quality Criteria and
System/Software Background Artifacts

Validate Test Design by Inspecting Traces from Scenarios

Verify Software Implementation by Inspecting Traces to Requirements

Verify Software Interface Design by Inspection Against Interface
Requirements

Verify System Software Safety by Comparing Concept Documentation,
Requirements, Testing, Design and Code with Hazard Analysis
Documentation to Establish a Safety Case, Across the Software
Development Life Cycle

Verify and Validate Requirement Implementation using Flow
Diagrams to Uncover Missing, Conflicting, or Unnecessary Behavior

Methods
Incompatible
with Agile

Interface Requirements Objectives

• Correlate integration requirements to specific
interfaces and examine coverage to ensure that
all interfaces are specified and all interface
requirements relate to a necessary interface

• Correlate integration requirements to ensure
they are required, incorrect behavior is
prevented, unexpected inputs responded to
appropriately.

• Verify interface requirements are correct,
consistent, complete, accurate, verifiable, where

UH-CL / VT 20

Interface Requirements
Hybrid Agile Variant

• Capture the interface requirements as they
emerge during each release

• As interfaces are defined to clear blocks,
developer artifacts can be used to build a picture
of the interface and refine requirements

• Interface map using tool

– Starts with interface template or estimate

– Incrementally capture interfaces and track properties

– Track completeness and measures of risk burndown

UH-CL / VT 21

Requirement Validation Objectives
• Ensure system requirements satisfy acquirer needs

relative to system software
• Ensure software requirements meet system needs

from functional and non-functional perspectives
• Ensure requirements for software interfaces are

adequate in terms of operational environment,
dependability, fault tolerance, and functional and non-
functional perspectives

• Analysis steps address
– Unambiguous
– Verifiable
– Consistent
– Correct
– Complete

UH-CL / VT 22

Requirement Validation Agile Variant

• Unambiguous, verifiable, consistent
compatible

• Correct, complete are challenge

• Potential solutions

– Predictive model of requirements

– Risk burndown model

UH-CL / VT 23

Test Design Objectives

• Ensure test designs correctly specify a feature or
combination of features

• Ensure the test environment is sufficiently
complete, correct, and accurate

• Analysis steps
– Develop a set of scenarios considering correctness

and adverse conditions

– Validate the scenarios with walk-through

– Trace requirements to scenarios.

– Trace scenarios to software structure

– Trace the scenarios to test design and environment

UH-CL / VT 24

Test Design Agile Variant
• Identify relevant scenarios

• Map requirements to scenarios as
requirements emerge

• Potential solutions similar to Method 2

– Predictive model of test design

– Risk burndown model

UH-CL / VT 25

Software Implementation Objectives
• Ensure that software components can reliably perform required

capabilities under nominal and off-nominal conditions, perform no
undesired behaviors, and that documentation is adequate to support
maintenance

• Ensure that the code satisfies dependability and fault tolerance
requirements, is capable of detecting identified hazards, and introduces
no hazards.

• Ensure that all applicable requirements are implemented (for example,
from SRS and IRS) and no unspecified behavior is introduced.

• To accomplish these objectives
– Determine required nominal conditions from operations documentation and

technical reference
– Locate the source code relevant to the required functionality
– Analyze implementation for completeness, correctness, behavior under

unexpected conditions
– Trace implementation to nominal and off-nominal scenarios
– Analyze code in terms of fault tolerance and hazard response

UH-CL / VT 26

Software Implementation Agile Variant
• Partial assessment at end of each release

• An analytical framework to track

– Implemented functionality

– Expected functionality

– Recognize unexpected functionality

• Example techniques

– Quality Function Deployment

– Safety cases

– IV&V reference models

UH-CL / VT 27

Interface Design Objectives
• Ensure all relevant requirements represented in design

documentation
• Find evidence that all relevant assurance goals are achieved

for all interfaces with hardware, operators, other software
functions, and other systems.

• To accomplish these objectives
– Compare requirements and design documentation including

analysis of algorithms, commanding, state/mode definitions,
exception handling, error logging, configuration data,
performance criteria (e. g. timing, latency, bandwidth), interface
specifications (all layers)

– Verify that interface requirements are unambiguous, complete,
accurate, consistent, testable/verifiable, traceable

– Verify interface flows are correct and consistent (sequences,
flows, control, formats, standards)

UH-CL / VT 28

Interface Design Agile Variant
• IV&V interface model

– Captures information from each sprint

– Builds an understanding of the as-built interfaces

– Check for common interface errors

• An interface IV&V approach which deals with
both requirements (Method 1) and design
(Method 41) may be the best approach.

UH-CL / VT 29

System Software Safety Objectives
• Known software-based hazards are controlled
• Dependability and fault tolerance requirements are satisfied via

lower level requirements, software design, and implementation and
that testing is in place to verify the fault tolerance behavior is not
compromised by modifications

• All required functionality is implemented correctly and no
unnecessary behavior is implemented

• To accomplish the objectives
– Define a set of top-level claims related to critical events such as

collision avoidance during docking, parachute operations, deorbit
– Using hazard reports and system requirements documentation,

establish the first levels of supporting claims
– Continue developing supporting claims as the project proceeds,

tracing in turn to requirements, design, code, and test
– Capture and document evidence (requirements, design, code, test) at

the lowest level of the safety case

UH-CL / VT 30

System Software Safety Agile Variant
• Depth-first approach required
• Develop a complete safety case using postulated

claims and evidence
• Update the case incrementally

– Establish the top level claims using concept
documentation, the system architecture, and high-
level requirements

– Develop the safety case as deep as possible using the
early lifecycle artifacts

– Postulate successively lower level claims across the
breadth of the safety case, down to the evidence level

– At each release(or more often if possible), revise the
safety case to reflect the functionality implemented

UH-CL / VT 31

Requirement Implementation
Objectives

• Ensure requirements represented in design
• Design does not introduce capability that is not

required
• Ensure all elements of the design are in code

components
• Code does not introduce capability that is not required
• Ensure all requirements trace to code
• Ensure code components can reliably perform

– Nominal conditions
– Off-nominal conditions

• Documentation (both embedded and stand-alone)
adequate for code maintenance.

UH-CL / VT 32

Requirement Implementation
Agile Variant

• Hierarchical requirements trace tool

• System model

– UML/SysML

– Flow diagrams

• Risk burndown tool

UH-CL / VT 33

Conclusions & Future Work
• Pure Agile not appropriate for mission-critical

or safety-critical projects

• Hybrid Agile gaining acceptance

• Adapt IV&V methodology to hybrid Agile

– Maintain technical rigor

– Accommodate project flows

34

